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Abstract. 

Previous studies on elastic wave propagation in fractured media have demonstrated that a single 

planar fracture supports fracture interface waves and that two plane parallel fractures support 

fracture channel waves.  Here, the results are presented for plane wave propagation through an 

infinite number of plane parallel fractures with equal fracture spacing and fracture stiffnesses.  

Analysis of the dispersion equations for this fractured system demonstrates that these waves 

exhibit symmetric and antisymmetric particle motions, degenerate to classical Rayleigh-Lamb 

plate waves when the fractures are completely open, and possess dispersive velocities that are 

functions of both the fracture stiffness and spacing.  Time-frequency analysis performed on a 

series of laboratory ultrasonic transmission measurements on a fractured rock analog shows good 

agreement with the theoretical predictions.   

1.  Introduction  

 Rock masses are often fractured with sets of near-parallel, near-equally spaced fractures.  

These compliant, imperfect interfaces can have a large impact on both the mechanical and 

hydraulic properties of the rock mass.  Seismic (elastic) waves can be an effective tool for 

locating fractures and characterizing their properties because of the sensitivity of wave 

velocities, amplitudes and spectral characteristics to the fracture compliance.  Fractures can also 

trap and guide waves, and the behavior of such waves may prove useful for probing the 

geometrical and mechanical properties of the fractures. 



 For the characterization of fractures using seismic waves, the effect of fracture properties on 

wave behavior needs to be described quantitatively.  This can be achieved by modeling a fracture 

as a non-welded interface of negligible thickness described by a simple constitutive model 

referred to in the literature as linear slip or displacement-discontinuity (D-D) boundary 

conditions [Schoenberg, 1980; Pyrak-Nolte et al., 1990].  The key parameter of the model, the 

fracture stiffness (or compliance), can be determined experimentally, or from more detailed 

fracture models consisting of a distribution of small cracks and contacts along a plane [Hudson et 

al., 1996; Liu et al., 2000].  Using the D-D model, dispersion equations of the fracture-guided 

waves can be derived for single fractures (fracture interface waves [Pyrak-Nolte and Cook, 

1987]) and a pair of parallel fractures (fracture channel waves [Nihei et al, 1999]).  These 

equations provide predictive capability for the fracture parameters from measured wave 

properties.  However, for wave propagating along a large number of parallel fractures, numerical 

simulations are usually performed ([e.g., Mal, 1988; Yi et al., 1997]).   

 In this paper, we present analytical dispersion equations for elastic wave propagation along an 

infinite series of equally spaced parallel fractures.  Similar to classical Rayleigh-Lamb waves 

propagating along single plates, these waves propagating along parallel layers that are 

mechanically coupled across fractures also possess symmetric and antisymmetric particle 

motions.  The degree of the coupling can be described quantitatively by the fracture stiffness 

defined in the D-D model. 

2.  Dispersion Equations 

 The general dispersion equations for plane wave propagation in a medium containing equally 

spaced parallel fractures can be obtained by applying dynamic periodic boundary conditions (i.e., 

Floquet-Bloch theory [Floquet, 1883]) and displacement-discontinuity boundary conditions 

[Schoenberg, 1980] to the plane waves within a single layer between two neighboring fractures.  

The first set of boundary conditions accounts for the periodicity of the fractures, and the second 

set accounts for the mechanical response of individual fractures.  For the case of in-plane wave 



propagation, each of these two sets of boundary conditions consists of two independent 

equations.  From these equations, we obtain a homogeneous linear system of equations for four 

unknown amplitude coefficients of plane waves (for P- and S-waves propagating in the "up" and 

"down" directions across the fractures).  The propagation of multiply scattered waves is 

described by an effective slowness or wavenumber (Bloch wave number) that is included in the 

Floquet-Bloch boundary condition.  The dispersion equation is obtained by requiring the matrix 

determinant to vanish, which yields a nonlinear equation for the frequency-dependent effective 

slowness.    

 Such an equation can be expressed in terms of dimensionless parameters.  For an isotropic, 

homogeneous and elastic background medium with density ρ and P- and S-wave velocities CP 

and CS, a dimensionless frequency is defined as Ω≡ωh/CS, where ω  is the circular frequency and 

h is the fracture spacing.  For a given fracture-parallel (x-direction) component of dimensionless 

slowness ξx (normalized by the S-wave slowness), the fracture-normal (z-direction) components 

of the dimensionless P- and S-wave slownesses within intact layers are 2 2P
z xξ ζ ξ≡ −  and 

21S
z xξ ξ≡ − , respectively, where ζ≡CS/CP.  By introducing the z-direction dimensionless 

effective slowness ξ̂ z, the phase difference in the particle motions over a single fracture spacing 

is ẑie ξΩ .  For a single fracture, dimensionless fracture stiffnesses or impedance ratios are given by 
S
jjβ ≡2κjj/ωρCS (j=x,z), where κjj are normal (j=z) and shear (j=x) components of the fracture 

stiffness defined by the displacement-discontinuity boundary conditions 

 ( )jj j j zju uκ σ+ −− =  (1) 

 zj zj zjσ σ σ+ −≡ = . (2) 

Superscripts + and - indicate opposing surfaces of the fracture, and uj and σzj are the j-

components of displacement and stress on each surface, respectively. 

 Using the parameters defined above, the dispersion equations for wave propagation within 

this fractured medium is [Schoenberg, 1983; Nakagawa et al., 2002] 

 2 ˆ ˆcos cos 0z zF A B Cξ ξ≡ Ω + Ω + =  (3) 



where A, B, and C are nonlinear functions of S
jjβ  and ξx but not ẑξ .  Because the fracture-normal 

component of group velocity needs to vanish for the waves propagating parallel to the fractures, 

the following condition can be imposed: 

 ˆ ˆ ˆ/ sin (2 cos ) 0z z zF A B∂ ∂ξ ξ ξ= −Ω Ω ⋅ Ω + = . (4) 

This equation yields the following three groups of conditions: 

 i) Ω ẑξ =2mπ, m=0,1,2,… (5) 

 ii) Ω ẑξ =(2m+1)π, m=0,1,2,… (6) 

 iii) Ω ẑξ =cos-1(B/2A). (7) 

In equations (5) and (6), only non-negative slownesses were specified because negative 

slownesses lead to the same results as the positive slownesses with the same magnitude.  The 

first condition implies that particle motions within any neighboring two layers are identical 

because their particle motions are related by the effective slowness as uj(z+h)=uj(z) ẑie ξΩ =uj(z).  

Because the phase of the motions is identical, we call the wave satisfying these conditions the "0-

mode."  The second condition implies that the wave particle motions are 180˚ out of phase (i.e., 

uj(z+h)=uj(z) ẑie ξΩ =-uj(z)), and we call this wave the "π-mode."  The third condition implies more 

complicated non-linear dependency of ẑξ  on the unknown variable ξx, that is beyond the scope 

of this paper (a limited discussion is provided in [Nakagawa, 1998]).  For the first two 

conditions, equation (3) can be factored into two terms as 

 ( )( ) 0S P S S
zz z p xx z qF f fβ ξ β ξ= + + = . (8) 

 For the "0-mode", by introducing equation (5), the functions fp and fq in equation (8) become 

 2 2 2(1 2 ) cot( / 2) 4 cot( / 2)P P S S
p x z x z z zf ξ ξ ξ ξ ξ ξ= − ⋅ Ω + ⋅ Ω , (9) 

 2 2 2(1 2 ) cot( / 2) 4 cot( / 2)S P S P
q x z x z z zf ξ ξ ξ ξ ξ ξ= − ⋅ Ω + ⋅ Ω . (10) 

It should be noted that the solution of equations fp=0 and fq=0 are the symmetric modes (S-

modes) and antisymmetric modes (A-modes) of classical Rayleigh-Lamb plate waves.  It can be 

shown that the particle motions of the mode for the dispersion equation 0S P
zz z pfβ ξ + = , which is 

a function of the normal fracture stiffness κzz, are also symmetric within individual layers.  



Likewise, the dispersion equation 0S S
xx z qfβ ξ + =  depends on the shear fracture stiffness κxx, and 

provides particle motions that are antisymmetric.   

 For the "π-mode", the condition given by equation (6) leads to equations 

 2 2 2(1 2 ) tan( / 2) 4 tan( / 2)P P S S
p x z x z z zf ξ ξ ξ ξ ξ ξ = − − ⋅ Ω + ⋅ Ω  ,  (11) 

 2 2 2(1 2 ) tan( / 2) 4 tan( / 2)S P S P
q x z x z z zf ξ ξ ξ ξ ξ ξ = − − ⋅ Ω + ⋅ Ω  . (12) 

In contrast to the "0-mode," f q = 0  is the symmetric mode (Rayleigh-Lamb wave), and so is the 

shear stiffness dependent mode 0S S
xx z qfβ ξ + = .  Similarly, fp=0 and 0S S

zz x pfβ ξ + =  (normal-

stiffness dependent) are antisymmetric.  Figure 1 summarizes general mode shapes for the "0-

mode" and "π-mode," with symmetric and antisymmetric particle motions.   

 These "generalized" Rayleigh-Lamb plate waves can also be viewed as a generalization of the 

fracture-guided waves for single fractures (fracture interface waves).  However, they may not 

deserve the title of "guided" waves in the classical sense because the waves are assumed to be 

present throughout the fractured media.   

3.  Examples 

 Dispersion equation (8) with functions given by equations (9) to (12) can be solved to obtain 

multiple values of the fracture-parallel slowness ξx for given values of fracture stiffness, spacing 

and wave frequency.  Once a slowness is obtained, the group velocity in the fracture-parallel 

direction is obtained through the relationship (e.g., [Schoenberg and Muir, 1989]) 

 / /
ˆ ˆ/ ( / ) ( / ) ( / )

x x
gx S

x x x z z

f k fC C
k f f f f

∂ ∂ ∂ ∂ξ∂ω
∂ ∂ ∂ω ξ ∂ ∂ξ ξ ∂ ∂ξ ω ∂ ∂ω

= = − = ⋅
+ −

.  (13) 

where kx is the fracture-parallel wavenumber and f=0 is the dispersion equation.  

 To examine the effect of fracture stiffness on the dispersion of the waves, it is convenient to 

define dimensionless fracture stiffnesses bjj≡κjjh/CS   (j=x,z) which are independent of wave 

frequency.  In the examples shown in Figure 2, the effect of fracture stiffness on the group 

velocity dispersion of the four types of the generalized Rayleigh-Lamb waves is examined for a 

material with a Poisson's ratio equal to 0.2.  Normal and shear fracture stiffnesses are assumed to 



be equal (b≡bzz=bxx).  In the figure, the mth mode of each mode type is labeled as, Sm-0, Sm-π, 

Am-0 and Am-π.  From the figure, as the fracture stiffnesses approach zero, the Sm-0 and Sm-π 

modes degenerate to single symmetric Rayleigh-Lamb modes, and the Am-0 and Am-π modes to 

antisymmetric Rayleigh-Lamb modes, respectively.  In contrast, in the high-stiffness limit, a part 

of the S0-0 and S1-0 modes becomes a P-wave, and the A0-0 mode becomes an S-wave.  Other 

symmetric and antisymmetric modes with the same order and phase difference (i.e., 0- and π-

modes) degenerate to single modes.   

 To demonstrate the existence of the generalized Rayleigh-Lamb wave within a medium 

containing parallel fractures, we conducted laboratory experiments on an idealized fractured 

medium consisting of a stack of roughened steel plates.  The surfaces of each plate were sand-

blasted to produce compliant interfaces.  The thickness of individual plates was 3.18 mm, the 

width and height was 10.16 cm.  Measured P- and S-wave velocities of the steel were 5901 

m/sec and 3243 m/sec, respectively.  This sample was the same one used in the experiment 

reported by Pyrak-Nolte et al. (1990b).  In addition to this sample, a single plate (thickness 3.40 

mm, length 10.2 mm) and an intact steel cylinder (diameter 10.2 cm, length 8.65 cm) were also 

tested for comparison, representing the cases for zero and infinite fracture stiffnesses, 

respectively. 

 During the test, a pair of piezoelectric transducers with a central frequency of 1 MHz was 

clamped on the sides of the sample (Figure 3), and waves transmitted along the model fractures 

were measured for different axial loads (0 kN and 50 kN) to examine the dispersion of the waves 

at different fracture stiffnesses.   

 For the P-wave source with the wavelength close to the plate thickness, the dispersion was the 

strongest for the single plate, and was not present for the intact block (Figure 4). Also, for all the 

cases except for the reference “intact” case, the first-arriving part of the waveforms contained 

higher frequencies than the later part.  To have a better understanding of the velocity dispersion 

of the measured waves, we performed a time-frequency analysis using a moving window 

maximum entropy method (e.g., [Burg, 1967]) (Figure 5).  From the plots, systematic changes in 



the group velocity dispersion of the waves propagating along the fractures can be seen as the 

fracture stiffness is increased.  The superposed type curves were computed using the equations  

(9) and (13).  From the experimentally measured dispersion of the waves, we identify the first-

arrving, high-frequency part of the waves in Figure 4 as mostly the S1-0 mode, and the 

subsequent strongly dispersive part as the S0-0 mode.  Antisymmetric (A-) and “π-“ modes were 

not considered here because the geometry of the source does not allow the generation of these 

modes.  By using a series of type curves for the theoretical dispersion and comparing them with 

the experimentally measured dispersion, the fracture stiffness can be determined.  For the 

example examined above, the dimensionless normal stiffness of the fractures was approximately 

bzz=1 for the normal load of 0 N, and bzz=2 for 50 kN.   

4.  Conclusions  

In this paper, we presented closed-form dispersion equations for elastic wave propagation along 

an infinite series of equally spaced, plane-parallel fractures, and examined the dispersion of the 

waves as a function of fracture stiffness.  Our analysis showed that these waves are Rayleigh-

Lamb plate waves (or Lamb waves) generalized for finite fracture stiffness.  An important result 

is that the dispersion of these new waves can be used to determine the fracture stiffness of the 

fractures with a known fracture spacing.  Furthermore, because different modes of these waves 

depend on either normal or shear fracture stiffness, as with the fracture interface waves 

propagating along a single fracture ([Pyrak Nolte and Cook, 1987]), the normal and shear 

fracture stiffness can be determined independently from the dispersion of different modes. We 

demonstrated this by determining the normal fracture stiffness of a fractured rock analog using 

the dispersion of the lowest-order symmetric mode. 
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NAKAGAWA ET AL.:  WAVE PROPAGATION ALONG PARALLEL FRACTURES 

 

Figure 1.  Schematic plots of mode shapes for the four types of fracture stiffness-dependent, 

generalized Rayleigh-Lamb modes.  

Figure 2.  Theoretical dispersion curves for the group velocities of generalized Rayleigh-Lamb 

waves, as a function of dimensionless fracture stiffness b.  Poisson's ratio of the material is 

assumed to be 0.2. 

Figure 3.  Experimental setup for measuring the dispersive group velocities of guided waves 

propagating in a medium with equally-spaced, plane-parallel fractures. 

Figure 4.  Measured waveforms for compressional transducers at different loads.  Note that the 

propagation distance is slightly different for different samples (see text). 

Figure 5.  Group velocity dispersion curves obtained from time-frequency analysis of the 

measured waveforms.  Dark colors indicate high wave energy, and each plot is normalized to the 

highest value of the plot. 
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